Second Year Calculus - David M. Bressoud - Springer - Readings in Mathematics

nthdegree's books
(9513)
Registrato come venditore privato
Non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Ulteriori informazioni
US $39,95
CircaEUR 34,63
Condizione:
Come Nuovo
Publisher: SpringerYear: 1991ISBN: 038797606XDescription: Trade Paperback, Fine condition, ... Maggiori informazioniinformazioni sulla condizione
Goditi i vantaggi. Restituzioni accettate.
Spedizione:
US $5,22 (circa EUR 4,52) USPS Media MailTM.
Oggetto che si trova a: Norton, Massachusetts, Stati Uniti
Risparmia con la spedizione combinata
Acquista vari oggetti
Se acquisti due o più oggetti idonei dallo stesso venditore, verranno applicati automaticamente gli sconti sulla spedizione.
Combina gli oggetti e risparmia
Per sapere se gli oggetti sono idonei, aggiungili semplicemente al carrello e vedrai il prezzo della spedizione combinata al momento del pagamento.
Consegna:
Consegna prevista tra il gio 6 nov e il mer 12 nov a 94104
I tempi di consegna previsti utilizzando il metodo proprietario di eBay, che è basato sulla vicinanza dell'acquirente rispetto al luogo in cui si trova l'oggetto, sul servizio di spedizione selezionato, sulla cronologia di spedizione del venditore e su altri fattori. I tempi di consegna possono variare, specialmente durante le festività.
Restituzioni:
Restituzioni entro 30 giorni. Le spese di spedizione del reso sono a carico dell'acquirente..
Pagamenti:
    Diners Club

Fai shopping in tutta sicurezza

Garanzia cliente eBay
Se non ricevi l'oggetto che hai ordinato, riceverai il rimborso. Scopri di piùGaranzia cliente eBay - viene aperta una nuova finestra o scheda
Il venditore si assume la piena responsabilità della messa in vendita dell'oggetto.
Numero oggetto eBay:365844659283

Specifiche dell'oggetto

Condizione
Come Nuovo
Libro che sembra nuovo anche se è già stato letto. La copertina non presenta segni di usura visibili ed è inclusa la sovraccoperta(se applicabile) per le copertine rigide. Nessuna pagina mancante o danneggiata, piegata o strappata, nessuna sottolineatura/evidenziazione di testo né scritte ai margini. Potrebbe presentare minimi segni identificativi sulla copertina interna. Mostra piccolissimi segni di usura. Per maggiori dettagli e la descrizione di eventuali imperfezioni, consulta l'inserzione del venditore. Vedi tutte le definizioni delle condizioniviene aperta una nuova finestra o scheda
Note del venditore
“Publisher: SpringerYear: 1991ISBN: 038797606XDescription: Trade Paperback, Fine condition, ...
ISBN
9780387976068
Categoria

Informazioni su questo prodotto

Product Identifiers

Publisher
Springer New York
ISBN-10
038797606X
ISBN-13
9780387976068
eBay Product ID (ePID)
21038442095

Product Key Features

Number of Pages
404 Pages
Publication Name
Second Year Calculus : from Celestial Mechanics to Special Relativity
Language
English
Subject
Calculus, Mathematical Analysis
Publication Year
1991
Features
Reprint
Type
Textbook
Subject Area
Mathematics
Author
David M. Bressoud
Series
Undergraduate Texts in Mathematics Ser.
Format
Trade Paperback

Dimensions

Item Weight
44.1 Oz
Item Length
9.3 in
Item Width
6.1 in

Additional Product Features

Intended Audience
Scholarly & Professional
LCCN
91-003846
Reviews
The subtitle of this book, ''From celestial mechanics to special relativity'' is correctly indicative of its content, and in the preface, the author enthusiastically pleads guilty to blurring the line between mathematics and physics. One of the book's merits is the substantive historical material given. Among other purposes this serves to show the physics setting in which many calculus concepts have their origin. The book eventually gets around to a fairly honest mathematical treatment of the traditional material of advanced calculus via differential forms, but before arriving at this in Chapter 5, mathematics students are likely to have some frustrating experiences. In Chapter 4 one encounters ''we define $\int\sp{bar b}\sb{bar a}f\sb 1(x,y,z)dx+f\sb 2(x,y,z)dy+f\sb 3(x,y,z)dz$ to be the work done by this force field as it moves a particle along the directed line segment from $bar a$ to $bar b$''. Exercise 8 at the end of this section states ''Prove that in an arbitrary force field the amount of work done in moving from $bar a$ to $bar b$ may be dependent on the path''. So, one asks oneself, how is {\it work} defined? Nothing more is to be found than the statement in Chapter 2 that work is force times distance, and the resulting representation as a dot product of vectors. The book has much to recommend it. If the first four chapters are primarily to serve as providing some intuitive foundation, it might be better to more explicitly acknowledge this, and to find a more appropriate formulation for whatever is intended in exercises such as the one cited above. ZENTRALBLATT MATH
Number of Volumes
1 vol.
Illustrated
Yes
Dewey Decimal
515
Table Of Content
1 F=ma.- 1.1 Prelude to Newton's Principia.- 1.2 Equal Area in Equal Time.- 1.3 The Law of Gravity.- 1.4 Exercises.- 1.5 Reprise with Calculus.- 1.6 Exercises.- 2 Vector Algebra.- 2.1 Basic Notions.- 2.2 The Dot Product.- 2.3 The Cross Product.- 2.4 Using Vector Algebra.- 2.5 Exercises.- 3 Celestial Mechanics.- 3.1 The Calculus of Curves.- 3.2 Exercises.- 3.3 Orbital Mechanics.- 3.4 Exercises.- 4 Differential Forms.- 4.1 Some History.- 4.2 Differential 1-Forms.- 4.3 Exercises.- 4.4 Constant Differential 2-Forms.- 4.5 Exercises.- 4.6 Constant Differential k-Forms.- 4.7 Prospects.- 4.8 Exercises.- 5 Line Integrals, Multiple Integrals.- 5.1 The Riemann Integral.- 5.2 Line Integrals.- 5.3 Exercises.- 5.4 Multiple Integrals.- 5.5 Using Multiple Integrals.- 5.6 Exercises.- 6 Linear Transformations.- 6.1 Basic Notions.- 6.2 Determinants.- 6.3 History and Comments.- 6.4 Exercises.- 6.5 Invertibility.- 6.6 Exercises.- 7 Differential Calculus.- 7.1 Limits.- 7.2 Exercises.- 7.3 Directional Derivatives.- 7.4 The Derivative.- 7.5 Exercises.- 7.6 The Chain Rule.- 7.7 Using the Gradient.- 7.8 Exercises.- 8 Integration by Pullback.- 8.1 Change of Variables.- 8.2 Interlude with Lagrange.- 8.3 Exercises.- 8.4 The Surface Integral.- 8.5 Heat Flow.- 8.6 Exercises.- 9 Techniques of Differential Calculus.- 9.1 Implicit Differentiation.- 9.2 Invertibility.- 9.3 Exercises.- 9.4 Locating Extrema.- 9.5 Taylor's Formula in Several Variables.- 9.6 Exercises.- 9.7 Lagrange Multipliers.- 9.8 Exercises.- 10 The Fundamental Theorem of Calculus.- 10.1 Overview.- 10.2 Independence of Path.- 10.3 Exercises.- 10.4 The Divergence Theorems.- 10.5 Exercises.- 10.6 Stokes' Theorem.- 10.7 Summary for R3.- 10.8 Exercises.- 10.9 Potential Theory.- 11 E = mc2.- 11.1 Prelude to Maxwell's Dynamical Theory.-11.2 Flow in Space-Time.- 11.3 Electromagnetic Potential.- 11.4 Exercises.- 11.5 Special Relativity.- 11.6 Exercises.- Appendices.- A An Opportunity Missed 361.- B Bibliography 365.- C Clues and Solutions 367.- Index 382.
Edition Description
Reprint
Synopsis
Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book carries us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics., This textbook covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The exercises and observations of mathematical symmetry studied in the text enable the student to better understand the interaction of physics and mathematics., Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.
LC Classification Number
QA299.6-433

Descrizione dell'oggetto fatta dal venditore

Informazioni su questo venditore

nthdegree's books

98,5% di Feedback positivi11 mila oggetti venduti

Su eBay da feb 1999
Registrato come venditore privatoPertanto non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Scopri di piùScopri di più

Valutazione dettagliata del venditore

Media degli ultimi 12 mesi
Descrizione
4.9
Spese spedizione
4.9
Tempi di spedizione
5.0
Comunicazione
5.0

Feedback sul venditore (9.174)

Tutti i punteggiselected
Positivo
Neutro
Negativo