|In vendita nella categoria:
Ne hai uno da vendere?
CanO'Bins
(1135)
Registrato come venditore privato
Non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Ulteriori informazioni

Probabilistic Machine Learning: An Introduction (Adaptive Computation Like New

US $42,95
CircaEUR 38,18
Condizione:
Come Nuovo
Spedizione:
US $7,96 (circa EUR 7,08) USPS Ground Advantage®.
Oggetto che si trova a: Brownsville, Texas, Stati Uniti
Consegna:
Consegna prevista tra il gio 15 mag e il mer 21 mag a 43230
I tempi di consegna previsti utilizzando il metodo proprietario di eBay, che è basato sulla vicinanza dell'acquirente rispetto al luogo in cui si trova l'oggetto, sul servizio di spedizione selezionato, sulla cronologia di spedizione del venditore e su altri fattori. I tempi di consegna possono variare, specialmente durante le festività.
Restituzioni:
Restituzioni non accettate.
Pagamenti:
    Diners Club

Fai shopping in tutta sicurezza

Garanzia cliente eBay
Se non ricevi l'oggetto che hai ordinato, riceverai il rimborso. Ulteriori informazioniGaranzia cliente eBay - viene aperta una nuova finestra o scheda
Il venditore si assume la piena responsabilità della messa in vendita dell'oggetto.
Numero oggetto eBay:226741610671

Specifiche dell'oggetto

Condizione
Come Nuovo: Libro che sembra nuovo anche se è già stato letto. La copertina non presenta segni di ...
Brand
Unbranded
Book Title
Probabilistic Machine Learning: An Introduction (Adaptive Comput
MPN
Does not apply
ISBN
9780262046824

Informazioni su questo prodotto

Product Identifiers

Publisher
MIT Press
ISBN-10
0262046822
ISBN-13
9780262046824
eBay Product ID (ePID)
11050020458

Product Key Features

Number of Pages
864 Pages
Publication Name
Probabilistic Machine Learning : an Introduction
Language
English
Subject
Intelligence (Ai) & Semantics, Computer Science, General
Publication Year
2022
Type
Textbook
Subject Area
Computers, Science
Author
Kevin P. Murphy
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
1.5 in
Item Weight
55.6 Oz
Item Length
9.3 in
Item Width
8.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2021-027430
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Table Of Content
1 Introduction 1 I Foundations 29 2 Probability: Univariate Models 31 3 Probability: Multivariate Models 75 4 statistics 103 5 Decision Theory 163 6 Information Theory 199 7 Linear Algebra 221 8 Optimization 269 II Linear Models 315 9 Linear Discriminant Analysis 317 10 Logistic Regression 333 11 Linear Regression 365 12 Generalized Linear Models * 409 III Deep Neural Networks 417 13 Neural Networks for Structured Data 419 14 Neural Networks for Images 461 15 Neural Networks for Sequences 497 IV Nonparametric Models 539 16 Exemplar-based Methods 541 17 Kernel Methods * 561 18 Trees, Forests, Bagging, and Boosting 597 V Beyond Supervised Learning 619 19 Learning with Fewer Labeled Examples 621 20 Dimensionality Reduction 651 21 Clustering 709 22 Recommender Systems 735 23 Graph Embeddings * 747 A Notation 767
Synopsis
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning- A Probabilistic Perspective . More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach., A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning: A Probabilistic Perspective . More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
LC Classification Number
Q325.5.M872 2022

Descrizione dell'oggetto fatta dal venditore

Informazioni su questo venditore

CanO'Bins

99% di Feedback positivi3,1 mila oggetti venduti

Su eBay da giu 2011
Registrato come venditore privatoPertanto non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Scopri di piùScopri di più
At CanO'Bins, we meticulously search through various sources to discover pre-loved items that deserve a second life. Our team scours bin stores, seeking out hidden gems—products with potential, ...
Mostra altro

Valutazione dettagliata del venditore

Media degli ultimi 12 mesi
Descrizione
4.9
Spese spedizione
4.8
Tempi di spedizione
5.0
Comunicazione
5.0

Feedback sul venditore (737)

Tutti i punteggi
Positivo
Neutro
Negativo
  • 7***d (443)- Feedback lasciato dall'acquirente.
    Ultimi 6 mesi
    Acquisto verificato
    Item came as shown and described, seller was quick with shipping and have no complaints, pricing was fair aswell as shipping and I have no issues what so ever. By far very satisfied with everything and would recommend purchasing from this seller and I look forward to buying again aswell.
  • a***b (1357)- Feedback lasciato dall'acquirente.
    Ultimi 6 mesi
    Acquisto verificato
    Awesome seller, quick shipping, great communication, and item was just as described. Thank you for a pleasant buying experience!
  • y***l (1900)- Feedback lasciato dall'acquirente.
    Ultimi 6 mesi
    Acquisto verificato
    Item was just as described, great communication, fast shipping. I recommend. 100% great seller.