Foto 1 di 4




Galleria
Foto 1 di 4




Neural Information Processing 26th International Conference Communication Part 4
US $59,99
CircaEUR 51,94
o Proposta d'acquisto
Condizione:
Buone condizioni
Libro che è già stato letto ma è in buone condizioni. Mostra piccolissimi danni alla copertina incluse alcune rigature, ma nessun foro o strappo. È possibile che la sovraccoperta per le copertine rigide non sia inclusa. La rilegatura presenta minimi segni di usura. La maggior parte delle pagine non è danneggiata e mostra una quantità minima di piegature o strappi, sottolineature di testo a matita, nessuna evidenziazione di testo né scritte ai margini. Non ci sono pagine mancanti. Per maggiori dettagli e la descrizione di eventuali imperfezioni, consulta l'inserzione del venditore.
Oops! Looks like we're having trouble connecting to our server.
Refresh your browser window to try again.
Spedizione:
US $5,50 (circa EUR 4,76) USPS Media MailTM.
Oggetto che si trova a: Fresno, California, Stati Uniti
Consegna:
Consegna prevista tra il mar 17 giu e il ven 20 giu a 94104
Restituzioni:
Restituzioni entro 30 giorni. Le spese di spedizione del reso sono a carico del venditore.
Pagamenti:
Fai shopping in tutta sicurezza
Il venditore si assume la piena responsabilità della messa in vendita dell'oggetto.
Numero oggetto eBay:204518624148
Specifiche dell'oggetto
- Condizione
- Book Title
- Neural Information Processing: 26Th International Conference...
- ISBN
- 9783030368074
Informazioni su questo prodotto
Product Identifiers
Publisher
Springer International Publishing A&G
ISBN-10
3030368076
ISBN-13
9783030368074
eBay Product ID (ePID)
11038595622
Product Key Features
Number of Pages
Xxiv, 782 Pages
Publication Name
Neural Information Processing : 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15, 2019, Proceedings, Part IV
Language
English
Subject
Probability & Statistics / General, Intelligence (Ai) & Semantics, Computer Vision & Pattern Recognition
Publication Year
2019
Type
Textbook
Subject Area
Mathematics, Computers
Series
Communications in Computer and Information Science Ser.
Format
Trade Paperback
Dimensions
Item Weight
42.9 Oz
Item Length
9.3 in
Item Width
6.1 in
Additional Product Features
Series Volume Number
1142
Number of Volumes
1 vol.
Illustrated
Yes
Synopsis
The two-volume set CCIS 1142 and 1143 constitutes thoroughly refereed contributions presented at the 26th International Conference on Neural Information Processing, ICONIP 2019, held in Sydney, Australia, in December 2019. For ICONIP 2019 a total of 345 papers was carefully reviewed and selected for publication out of 645 submissions. The 168 papers included in this volume set were organized in topical sections as follows: adversarial networks and learning; convolutional neural networks; deep neural networks; embeddings and feature fusion; human centred computing; human centred computing and medicine; human centred computing for emotion; hybrid models; image processing by neural techniques; learning from incomplete data; model compression and optimization; neural network applications; neural network models; semantic and graph based approaches; social network computing; spiking neuron and related models; text computing using neural techniques; time-series and related models; and unsupervised neural models., Adversarial Deep Learning with Stackelberg Games.- Enhance Feature Representation of Dual Networks for Attribute Prediction.- Data augment in imbalanced learning based on Generative Adversarial Networks.- A deep learning scheme for extracting pedestrian-parcel tuples from videos.- Support Matching: a Novel Regularization to Escape from Mode Collapse in GANs.- Patch-based Generative Adversarial Network Towards Retinal Vessel Segmentation.- A Gradient-based Algorithm to Deceive Deep Neural Networks.- Writing Style Adversarial Network for Handwritten Chinese Character Recognition.- Recovering Super-Resolution Generative Adversarial Network for Underwater Images.- Hierarchical Attention CNN Model for Relation Extraction.- Fault Tolerant Broad Learning System.- Group Loss: An Efficient Strategy for Salient Object Detection.- PPGCN: a message selection based approach for graph classification.- Multi-Task Temporal Convolutional Network for Predicting Water Quality Sensor Data.- CNN-LSTM Neural Networks for Anomalous Database Intrusion Detection in RBAC-Administered Model.- MC-HDCNN: Computing the Stereo Matching Cost with a Hybrid Dilated Convolutional Neural Network.- Convolutional Neural Network to Detect Thorax Diseases from Multi-View Chest X-Rays.- Visual Speaker Authentication by a CNN-based Scheme with Discriminative Segment Analysis.- Intrusion Detection Using Temporal Convolutional Networks.- Empirical Study of Easy and Hard Examples in CNN Training.- GCNDA: Graph Convolutional Networks with Dual Attention Mechanisms for Aspect Based Sentiment Analysis.- A Wind Power Prediction Method Based on Deep Convolutional Network with Multiple Features.- Simple ConvNet Based on Bag of MLP-based Local Descriptors.- Convolutional LSTM: A Deep Learning Method for Motion Intention Recognition Based on Spatiotemporal EEG Data.- A Deep Neural Network Model for Rating Prediction based on Multi-layer Prediction and Multi-granularity Latent Feature Vectors.- LSPM: Joint Deep Modeling of Long-term Preference and Short-term Preference for Recommendation.- How we Achieved a Production Ready Slot Filling Deep Neural Network without Initial Natural Language Data.- Swarm Intelligence Based Ensemble Learning of Deep Neural Networks.- DSMRSeg: Dual-Stage feature pyramid and Mutil-Range context aggregation for real-time Semantic Segmentation.- Safety and Robustness of Deep Neural Networks Object Recognition under Generic Attacks.- Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning.- Improving the Identification of Code Smells by Combining Structural and Semantic Information.- Learnable Gabor Convolutional Networks.- Deep Autoencoder on Personalized Facet Selection.- Attention-based Deep Q-Network in Complex Systems.- Effect of Data Augmentation and Lung Mask Segmentation for Automated Chest Radiograph Interpretation of Some Lung Diseases.- A Comparison Study of Deep Learning Techniques to Increase the Spatial Resolution of Photo-realistic Images.- Neural Architecture Search for Domestic Audio Tagging.- A Robust Embedding for Attributed Networks with Outliers.- Pay Attention to Deep Feature Fusion in Crowd Density Estimation.- Knowledge Reuse of Learning Agent Based on Factor Information of Behavioral Rules.- Community Based Node Embeddings for Networks.- Code Generation from Supervised Code Embeddings.- ComNE: Reinforcing Network Embedding with Community Learning.- D2PLS: A Novel Bilinear Method for Facial Feature Fusion.- Learning Network Representation via Ego-network-level Relationship.- DMCM: A Deep Multi-Channel Model for Dynamic Movie Recommendation.- Dance to Music Expressively: A Brain-inspired System Based on Audio-semantic Model for Cognitive Development of Robots.- Identifying EEG responses modulated by working memory loads from weighted phase lag index based functional connectivity microstates.- Combining Fisheye Camera with Odometer for Autonomous Parking.- Deep Learning and Statistical Models
LC Classification Number
Q337.5
Descrizione dell'oggetto fatta dal venditore
Informazioni sul venditore professionale
Informazioni su questo venditore
MochiMoney
100% di Feedback positivi•6,2 mila oggetti venduti
Registrato come venditore professionale
Feedback sul venditore (1.837)
- x***b (3962)- Feedback lasciato dall'acquirente.Ultimi 6 mesiAcquisto verificatoItem as promised, delivered promptly, thanks again!
- f***o (369)- Feedback lasciato dall'acquirente.Ultimi 6 mesiAcquisto verificatoEverything went well, described well, shipped safely and overall A+Nordica Gransport Ski Boots Gray Black 313 mm 270 - 275 Micro Comfort Fit (N° 204678674859)
- 1***a (793)- Feedback lasciato dall'acquirente.Ultimi 6 mesiAcquisto verificatoExcellent transaction, Item received quickly and in great condition A++++Vintage Rusty Surfboard Sherpa Lined Workman Jacket Size Men’s Large Defect READ (N° 204204812187)