Adaptive Computation and Machine Learning Ser.: Probabilistic Machine...

TextbookSavvy Inc
(254)
Registrato come venditore privato
Non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Ulteriori informazioni
US $98,00
CircaEUR 84,08
Condizione:
Buone condizioni
Spedizione:
US $9,99 (circa EUR 8,57) USPS Media MailTM.
Oggetto che si trova a: Bronx, New York, Stati Uniti
Consegna:
Consegna prevista tra il ven 24 ott e il ven 31 ott a 94104
I tempi di consegna previsti utilizzando il metodo proprietario di eBay, che è basato sulla vicinanza dell'acquirente rispetto al luogo in cui si trova l'oggetto, sul servizio di spedizione selezionato, sulla cronologia di spedizione del venditore e su altri fattori. I tempi di consegna possono variare, specialmente durante le festività.
Restituzioni:
Restituzioni non accettate.
Pagamenti:
    Diners Club

Fai shopping in tutta sicurezza

Garanzia cliente eBay
Se non ricevi l'oggetto che hai ordinato, riceverai il rimborso. Scopri di piùGaranzia cliente eBay - viene aperta una nuova finestra o scheda
Il venditore si assume la piena responsabilità della messa in vendita dell'oggetto.
Numero oggetto eBay:127439185661

Specifiche dell'oggetto

Condizione
Buone condizioni: Libro che è già stato letto ma è in buone condizioni. Mostra piccolissimi danni ...
Educational Level
Adult & Further Education
Level
Beginner, Intermediate
Country of Origin
United States
ISBN
9780262046824
Categoria

Informazioni su questo prodotto

Product Identifiers

Publisher
MIT Press
ISBN-10
0262046822
ISBN-13
9780262046824
eBay Product ID (ePID)
11050020458

Product Key Features

Number of Pages
864 Pages
Language
English
Publication Name
Probabilistic Machine Learning : an Introduction
Publication Year
2022
Subject
Intelligence (Ai) & Semantics, Computer Science, General
Type
Textbook
Author
Kevin P. Murphy
Subject Area
Computers, Science
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
1.5 in
Item Weight
55.6 Oz
Item Length
9.3 in
Item Width
8.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2021-027430
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Table Of Content
1 Introduction 1 I Foundations 29 2 Probability: Univariate Models 31 3 Probability: Multivariate Models 75 4 statistics 103 5 Decision Theory 163 6 Information Theory 199 7 Linear Algebra 221 8 Optimization 269 II Linear Models 315 9 Linear Discriminant Analysis 317 10 Logistic Regression 333 11 Linear Regression 365 12 Generalized Linear Models * 409 III Deep Neural Networks 417 13 Neural Networks for Structured Data 419 14 Neural Networks for Images 461 15 Neural Networks for Sequences 497 IV Nonparametric Models 539 16 Exemplar-based Methods 541 17 Kernel Methods * 561 18 Trees, Forests, Bagging, and Boosting 597 V Beyond Supervised Learning 619 19 Learning with Fewer Labeled Examples 621 20 Dimensionality Reduction 651 21 Clustering 709 22 Recommender Systems 735 23 Graph Embeddings * 747 A Notation 767
Synopsis
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning- A Probabilistic Perspective . More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach., A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author's 2012 book, Machine Learning: A Probabilistic Perspective . More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
LC Classification Number
Q325.5.M872 2022

Descrizione dell'oggetto fatta dal venditore

Informazioni su questo venditore

TextbookSavvy Inc

98,5% di Feedback positivi331 oggetti venduti

Su eBay da set 2018
In genere risponde entro 24 ore
Registrato come venditore privatoPertanto non si applicano i diritti dei consumatori derivanti dalla normativa europea. La Garanzia cliente eBay è comunque applicabile alla maggior parte degli acquisti. Scopri di piùScopri di più

Feedback sul venditore (93)

Tutti i punteggiselected
Positivo
Neutro
Negativo
  • b***b (40)- Feedback lasciato dall'acquirente.
    Ultimi 6 mesi
    Acquisto verificato
    Book was shipped and received quickly. Jacket and pages are in almost new condition. The only issue I have with this book is that it was not noted there was already an inscription in the book. I would not have purchased based on this alone and feel it should have been mentioned in the listing. The process was fast and efficient with no issues encountered outside of the inscription.
  • l***d (1313)- Feedback lasciato dall'acquirente.
    Ultimo anno
    Acquisto verificato
    Dishonest seller! I paid for 3 expensive books, yet I learned seller never shipped them, and so I contacted the seller about the issue, yet seller ignored. I had to ask eBay to step in and help me get my money back! Thank you, eBay, for helping me get my money back from this fraudulent seller!
  • d***1 (6)- Feedback lasciato dall'acquirente.
    Ultimi 6 mesi
    Acquisto verificato
    Book was shipped and received quickly. Provided tracking info, fast delivery !!!